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Traffic equations and granular convection

Daniel C. Hong* and Su Yue†

Department of Physics, Lewis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015
~Received 24 March 1998!

We investigate both numerically and analytically the convective instability of granular materials by two-
dimensional traffic equations. In the absence of vibrations traffic equations assume two distinctive classes of
fixed bed solutions with either a spatially uniform or nonuniform density profile. The former one exists only
when the functionV(r) that monitors the relaxation of grains assumes a cutoff at the closed packed density,
rc , with V(rc)50, while the latter one exists for any form ofV. Since there is little difference between the
uniform and nonuniform solution deep inside the bed, the convective instability of the bulk may be studied by
focusing on the stability of the uniform solution. In the presence of vibrations, we find that the uniform solution
bifurcates into a bouncing solution, which then undergoes a supercritical bifurcation to the convective insta-
bility. We determine the onset of convection as a function of control parameters and confirm this picture by
solving the traffic equations numerically, which reveals bouncing solutions, two convective rolls, and four
convective rolls. Further, convective patterns change as the aspect ratio changes: in a vertically long container,
the rolls move toward the surface, and in a horizontally long container, the rolls move toward the side walls.
We compare these results with the those reported previously with a different continuum model by Hayakawa,
Yue, and Hong@Phys. Rev. Lett.75, 2328~1995!#. Finally, we also present a derivation of the traffic equations
from Enskoq equation.@S1063-651X~98!09410-0#

PACS number~s!: 81.05.Rm, 47.20.2k, 46.10.1z
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I. INTRODUCTION

This paper is concerned with the numerical as well as
analytical analysis of two-dimensional traffic equation
termed modelB in the literature@1# with an aim to under-
stand the convective instability of granular materials. It h
been known since Faraday@2# that the granular materials in
vibrating bed develop permanent convective rolls when
strength of the vibration exceeds a critical value. Unlike
well known Rayleigh-Be´nard thermal convection in fluids
however, the origin of the granular convection has remai
relatively unexplored since its discovery, but recently tw
simultaneous works from the experimental side@3,4# with
the use of a MRI or x-ray method as well as from compu
simulations based on the distinct element method@5# have
substantially aided our understanding through visualizat
Yet, the theoretical efforts to uncover the basic mechan
of this granular convection have not been remarkable,
largely focused on producing convective patterns throu
computer models and simulations. While much impress
experimental data are currently being piled up, theoret
development@6–10# in this area seems to be still far from
complete. In order to have a deeper understanding of
granular convection, we find it essential to come up with
reasonable continuum model that contains a minimum n
ber of control parameters yet captures some of the essen
granular convection. The goal is certainly to explore anal
cally and numerically the instability mechanisms that lead
many fascinating complex nonlinear dynamics behaviors

Our aim here is twofold: We first present such a co
tinuum model along with previously unpublished numeric
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results based on two-dimensional traffic equations, and
ond, we carry out the linear stability analysis of the traf
equations and uncover the mechanism of granular convec
as a supercritical bifurcation of a bouncing solution. Th
mechanism for the granular convection is essentially ide
cal to the previously obtained scenario for a different co
tinuum model, termed modelA @8#. However, detailed simu-
lations of these two continuum models reveal distinctive
different convection patterns for different geometries and
rameter ranges. The most notable departure between the
is the migration of convective rolls toward the surface a
toward the walls in modelB, as the aspect ratio change
This is in sharp contrast with the results of modelA, which
predict a series of rolls in the container. Further, the simu
tion results of modelB yield rich dynamical behaviors as w
probe deeper into the parameter space, yet the analy
structure of the nontrivial patterns seems to be quite comp
and requires further extensive studies in the future. Our a
lytical study here focuses exclusively on the stability ana
sis of a uniform bouncing solution, but there exists a seco
class of solutions that are spatially nonuniform. The stabi
analysis of the latter is highly nontrivial and we only prese
a brief description of it in Appendix B. Fortunately, how
ever, since there is little difference between the uniform a
nonuniform solutions deep inside the bed, we expect that
uniform bouncing solution may capture the essence of
bulk instability. For details, see the text.

This paper is organized as follows. We first define t
model equations in Sec. II and make an attempt to derive
traffic equations from the Enskog equation in Appendix
We will then present numerical results in Sec. II, and prov
some insight into the stability mechanism of the granu
convection in Sec. III. We also discuss several unresol
questions in Sec. IV. We now turn to the main text.
4763 © 1998 The American Physical Society
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4764 PRE 58DANIEL C. HONG AND SU YUE
II. TWO-DIMENSIONAL TRAFFIC EQUATIONS
AND GRANULAR CONVECTION

Apart from its wide application to traffic flow problem
@12#, the traffic equations@13–15# have recently been pro
posed as an alternative continuum model to the Nav
Stokes equation, in investigating a variety of dynamical
sponses of granular materials. Examples include the gran
relaxation under repeated tapping@16#, density waves and
jamming and clogging phenomena@11,14,17#, 1/f spectrum
of hopper flow@18#, and granular segregation@19#. But we
point out that, unlike the studies to be presented in this pa
almost all of the studies thus far have focused exclusively
one-dimensional traffic equations@13–19#, which certainly
will not be able to describe the granular convection. Hen
we first present here the two-dimensional version of the t
fic equations@1#, termed modelB in Ref. @1#:
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wherec0
2;Te is the sound speed, andm is the viscosity. One

may add2vx /t on the right-hand side of Eq.~2!. Before
proceeding further, we point out some of the concept
problems associated with the traffic equations. First of
the momentum equation in the conventional Navier-Sto
equation is written as

dv i /dt52] i j s j1Fi ,

whered/dt is the total derivative, ands i j is the stress tenso
representing all the internal forces, andFi is the external
force imposed on the system. The reason the internal fo
are written as a divergence is because of the momen
conservation and the total sum of the volume force m
vanish because of Newton’s third law. Further, since the v
ume integral of the divergence can be replaced by the sur
integral, we must impose the boundary condition that
normal component of the stress tensor vanishes at the
face. On the other hand, in the traffic equations the mom
tum equations,~2! and~3!, are not written this way, and thi
may call for questions in utilizing the traffic equations
granular convection. In the presence of interstitial fluids su
as air, the use of traffic equations may be justified in
sense that the relaxation term may be effectively equiva
to assuming a drag force as was done in Appendix A. Ho
ever, in the absence of air, justification of the drag term
difficult and our conjecture, which has yet to be proven,
that the long range correlations among voids may produc
term that is not written as the divergence. To be more s
cific, we point out that the difference between modelB @1#
and modelA @8# is the presence of the relaxation term in t
r-
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z direction, which is represented by an average funct
V(r,t) with the relaxation timet. The net effect is for the
void ~or particle! to adjust its speed,vz , around the average
valueV(r) in a given timet. The origin of such a term ha
been discussed by Honget al. @16# in an attempt to introduce
correlations among grains or voids in the diffusing vo
model ~DVM ! @20#. In the DVM, the void speed is only a
function of local void density, namely,vz5V(r) 1 diffusion
term. However, a void is a compressible hydrodynamic
ject that changes and adjusts its shape to conform to
surroundings, not instantaneously, but in a given finite ti
t. So, it may be more appropriate to write down the tim
dependent equation for the velocity in a manner given by
~3! than to simply assume a fixed value at a given lo
density. The presence of such a relaxation process ma
effectively equivalent to assuming a drag force acting o
void, which is reasonable if there is interstitial fluid such
air. In the absence of interstitial fluid, the only reasona
conclusion is to assume that its origin lies in the frictions
the front and the rear glass of the container and from
wall.

The coupled equations~1!–~3! are fairly similar to the
two-phase model@26# of a fluidized bed that has been wide
used for mixtures of gas and granular particles. As shown
Appendix A, functions in the traffic equations~1!–~3! may
be inferred from the Enskog equation@21#; namely,2vz /t
is the drag term imposed externally on the particle, or
vibrations. Further, the Enskog pressure,Tr@11 f (r)r/2#
with f (r) the correlation function, produces an extra te
V(r) in addition to the hard sphere pressureTr. In this case,
we make an important observation that the coefficient
V(r) is proportional to the gravityg, which will enable us to
incorporate the vibrations of the bed. This observation ma
sense, because the strength of the mean speed~also termed
the drift velocity! is determined by the gravity and thus it
quite physical to assume that the mean speed of the vo
also proportional to the gravity as demonstrated in@16# and
Appendix A. In the moving frame of reference of the vibra
ing bed, the mean speedV(r) depends not only on the den
sity but also on the way the box is shaken. In the mov
frame, the effective gravity,g852g1Av2cos(vt), is the
only time-dependent factor involved in the mean spe
V(r). Therefore, without the loss of generality, we expe
that the mean speed of the granular flow along thez direction
assumes the following form:

V~r!5V0~r!g85V08~r!@211G sin~vt !#, ~4!

whereG5Av2/g with A the amplitude of the vibration, and
v the vibrational frequency.V0(r) is the mean speed in th
absence of the vibration, such as the case in the hopper fl
In one-dimensional traffic equation, we have used@16#:

V0~r!5a/~11br2!. ~5!

Note that the functional form ofV0 is not unique, and othe
exponentially decaying functions have also been propo
@13#. The V0(r) assumed above has a long tail when t
density increases, which might be unphysical since th
should be a critical density,rc , for any granular material, a
which all particles will be locked in if the density exceed
that critical density. This critical density may be proportion
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PRE 58 4765TRAFFIC EQUATIONS AND GRANULAR CONVECTION
or equal to the closed packed density. Thus, we have
ployed a different form in our numerical simulations th
assume the form@Fig. 1~a!#:

V~r!5~rc2r!bu~rc2r!, ~6!

where we have used a step functionu(rc2r)50 when r
>rc . A physically reasonable choice ofb may be such tha
V8(r),`. @For b,1, V8(r) diverges atrc , and thus in our
stability criterion, we set the density of the uniform solutio
slightly less than the closed packed density.# Before investi-
gating Eqs.~1!–~3! numerically, we first check the consis
tency.

A. Consistency check: static solutions without vibrations

It is worthwhile to examine a few special cases not o
for the sake of general limitation, but also to check the n
merical accuracy. WhenG5Av2/g50, which corresponds
to the case without the vibration, which we also term ‘‘t
fixed bed solution,’’ we expect a static solution wherevW
50 in all momentum equations. We note that there aretwo
classes of static solutions.

First, we discuss a spatially nonuniform solution. Rega
less of the functional form ofV(r), we find by inspection
that there exists a spatially nonuniform static solution t
satisfies the following differential equation:

V0~r!5
c0

r
¹r. ~7!

FIG. 1. ~a! Mean speedV0(r) as a function of density is plotted
above~a!, with the cutoff densityrc50.501 andb51/2. ~b! Static
solution is solved analytically and the densityr is plotted as a
function of the heightz, wherez50 is the bottom of the container
The numerically obtained result solution of Eqs.~1!–~3! is consis-
tent with this up to a very high accuracy.
-

-

-

t

This represents a situation where particles pile up fr
the top to bottom with a certain density distribution. F
simplicity, the mean speed is assumed to satisfy Eq.~6!. The
mean speed as a function of density is plotted in Fig. 1~a!.
When the density of the granular particles exceeds the c
cal density, say, for example,rc50.501, the particles be
come locked and have a steady-state densityr5rc . If we
solve Eq.~7! and plot the density profile as a function ofz
@Fig. 1~b!#, we can see that the uniform density profile
created close to the bottom of the plate, and then the den
decreases linearly to zero as we move to the top of the c
tainer. Physically, this is acceptable if we notice that wh
the particles near the bottom are locked, they act more lik
solid. On the other hand, those particles near the surface
rather loosely packed and ready to move, which is more
a traditional fluid, where the density linearly decreases as
altitude increases. Note that the granular bed is not subje
to vibrations at this time and thus this is a fixed bed soluti
Furthermore, the total number of particles is conserved
the mass conservation law of Eq.~1!. The flat region in the
density profile can be extended all the way to the surface
changing the exponentb. We emphasize that the nonsli
fluid boundary conditions have been imposed at the top
bottom plates as well as at the side walls in solving
equations numerically, namely,v'50 andv i50 @8#.

Second, a spatially uniform solution. There is, howeve
second class of solution that exists only whenV(r) has a
cutoff. This solution is a spatially uniform solution with th
density given by the closed packed density,rc , everywhere
with V(rc)50. Numerical simulations of the traffic equa
tions reveal that it is the spatially nonuniform solution that
realized in simulations. But the stability analysis of the u
form solution clearly shows that this solution is stable, to
and thus it must be realized with presumably suitable bou
ary conditions. Further, deep inside the bed, there is v
little difference between the uniform and nonuniform so
tions, and thus the convective instability inside the bulk m
be investigated by focusing on the stability of the unifor
bouncing solutions. In the absence of the rigorous stab
analysis of the nonuniform solution, this is only our gue
Future work must focus on the rigorous stability analysis
the nonuniform solution~see Appendix B! and compare its
result to those of the uniform solution obtained in Sec.
Before presenting the stability analysis, we first present
merical results.

B. Numerical results

We now investigate the time-dependent phenomena
merically. Numerical solutions are obtained by two differe
algorithms for the rectangular boundaries. The first one is
center-difference method, which has the accuracy of sec
order in space and first order in time. The second met
employed here is the Runge-Kutta algorithm, which has
accuracy of second order in space and third order in tim
The results show that both methods give consistent con
sions for the same boundary conditions. For most of
cases, we set the grid number equal toNx532 andNz532 in
order to improve the accuracy while accommodating
CPU cost. Lower or higher grid numbers have been exa
ined as well, but no significant changes have been fou
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4766 PRE 58DANIEL C. HONG AND SU YUE
Initially, the uniform solution is assumed, and typically fo
cycles are taken to calculate the average of the convec
after the stable periodical solution appears at each site in
lattice. In the stream line plot, all of the vector flow arrow
are normalized by the maximum speed. Numerically, we
serve two distinctive classes of solutions: the first one is
bouncing solutions, and the second one the convective r
We first examine the bouncing solutions. Note that the se
parameters that correspond to physical situations migh
v/2p520 Hz, Te;3, andm51/R'0.5 with the Reynolds
numberR5UL/ms'2, because the kinetic viscosity of th
granular material,ms'531023 m2/s and the typical veloc-
ity U'10 cm/s@8#. For pure numerical reasons, however,
what follows, unless mentioned otherwise, all the simu
tions are conducted with the parameters,m51,v51,t51
andTe52, L532 with V0(r) given by Fig. 1.

1. Bouncing solutions withG<Gc

For a fixed set of control parameters, bouncing solutio
first termed in@8#, appear when the vibration strengthG is
less than the numerically determined critical valueGc'1.5.
Upon increasingG, this bouncing solution becomes unstab
and bifurcates into a different branch and convective ro
appear. We have examined the case where the vibrati
acceleration is less than the gravity, in other words, the
mensionless variableG is less than 1, which is certainly th
regime below the critical strength. In real situations, forG
,1, nothing much really happens inside the box except p
haps the volume decreases due to settling caused by v
tion. However, in our simulation, due to the presence of
top layer, which suppresses the complicated surface mot
of the particles, we expect the bouncing solution to app
even forG,1. We have performed the simulation using d
ferent initial conditions such as a uniform density distrib
tion, a linear density distribution, or a fluctuation in the v
locity field. For all cases, we have found that after
relatively long CPU time, the convection pattern disappe
which implies that the convection does not persist in t
parameter regime. However, if we measure the local den
or velocity at different locations, we clearly observe oscil
tory solutions that persist everywhere inside the contain
This is termed the ‘‘bouncing solution’’ that exists before t
onset of the convection: the bulk of the granular mate
oscillates up and down, like a single solid ball, with a cent
frequency of the vibrating container and some harmon
The harmonic oscillations of the density and velocity at
same lattice site are displayed in Figs. 2~a! and 2~b!.

2. Convective domain withG>Gc

When G.Gc , the bouncing solutions disappear and t
permanent convective rolls appear inside the bulk. In or
to view this slow convection, we have to take the average
the velocity field over many periods. Typically four cycle
are used, since the amplitude of the convection is relativ
small in comparison to the amplitude of the vibration. This
true in experimental systems as well. In the stream-line p
we have normalized the velocity field by taking the ma
mum velocity component as the maximum length of the
rows.
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In Fig. 3~a! convection patterns are illustrated forG
52.25.Gc by plotting the streamline of the velocity field
whereV05(rc2r)bu(rc2r) with b52/3 andrc50.501 as
given in Fig. 1, is used. Notice that the flow direction clo
to the wall is in the downward direction, and at the center
the container, the particles try to move up.@Note that the tail
of the arrow is the direction of the flow, so the veloci
profile is up at the center. The same applies for Figs. 6
and 9.# The density profile is also plotted in Fig. 3~b!, where
the average of the density over one period remains clos
the static solution. At any given time the density profile va
ies around such an average velocity.

Next, it has been found that the geometry plays an imp
tant role in the convection pattern formation@7,22# and we
examine its effect on the convective instabilities. For e
ample, the change of the aspect ratio@defined as~width!/
~height!# may affect the relative position, the number of co
vection rolls, and the intensity of the convection with resp
to the same vibration parameters. We have examined
particluar cases:

First, the numerical results displayed in Figs. 4~a! and
4~b! show that the location of the convection rolls migra
when the aspect ratio changes. For the aspect ratio,Nx /Nz
50.5, convection rolls move toward the top of the contain
and the particles close to the bottom are almost locked,
lowing no relative motion to exist. This is consistent with th
experiments and MD simulation results. Convection rolls
shown in Fig. 4~a! and the corresponding density profile
plotted in Fig. 4~b!. Note that the stability analysis of mode

FIG. 2. Bouncing solutions for~a! the velocityvz and ~b! the
density at the same fixed location (x,z)5(15,15), where no con-
vection rolls appear and the bulk of the particles moves as a si
particle.G,Gc .
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PRE 58 4767TRAFFIC EQUATIONS AND GRANULAR CONVECTION
A @8# predicts a series of rolls when the vertical axis
creases as a multiple of the horizontal width. The form
V(r) with a cutoff at the closed packed density seems to
crucial in capturing the real convective patterns. Further,
average density curve (1) is very close to the static solutio
without the vibrations. The second curve (2) is the density
profile at the stop timet, which clearly shows that the den
sity profile varies in time around the equilibrium density pr
file.

Second, we have also examined the case with the la
aspect ratio,Nx /Nz52.0 @results are shown in Fig. 5~a!#,
where the width is twice larger than the height. Here, fo
convection rolls appear with two small ones near the
corners@Fig. 5~a!#. If we extend the width even longer to th
aspect ratio,Nx /Nz54, the convection pattern will only exis

FIG. 3. Convection pattern and density profile:~a! When G
.Gc , convection patterns are illustrated by plotting the stream
of the velocity field, where the velocity field is normalized by th
maximum velocity componentvz , with V0 given by Fig. 1.~b! The
density profile as a function of position. The average of the den
over one period remains close to the static solution~1! and at any
given time the density profile~circle! swings around such an ave
age velocity.
f
e
e

ge

r
p

around the narrow regime of side boundaries, represente
the zero intensity of convection@Fig. 5~b!#. It seems that
convection rolls only appear close to the boundaries, wh
indicates that the friction on the wall presumably plays
significant role in the origin of the vibration-induced conve
tions. Such observations are consistent with the observat
made by Taguchi in molecular dynamics simulations@22#.

3. Pattern dependence on V0„r…

While we have not systematically examined the stabi
diagram of the many-dimensional parameter space, we re
here a few cases simply to show the richness of the prob
associated with the traffic equations. In the previous ar
ments, we have only assumed thatV0(r) likely has a cutoff
when the density exceeds a critical density~at which the

e

ty

FIG. 4. Convection pattern for a small aspect ratioNx /Nz

50.5. All other parameters remain the same as in the case
Nx /Nz51.0. ~a! The two convection rolls move to the top region
the container and most of the particles close to the bottom
locked during the whole vibration cycles. This can be verified in
density profile at a fixed pointx516 ~b!, where the time-dependen
density curve~circle! varies around the static solution~cross!, but
much less at the bottom than at the top regime.
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4768 PRE 58DANIEL C. HONG AND SU YUE
particles become locked!, and reaches the maximum whe
the density approaches zero~since there are no interactions!.
On the other hand, it is also reasonable thatV0(r) might
have a long tail in the high density regime, which may re
resent very rough grains or grains of nonuniform siz
Hence, we have examined numerically the case with the
lowing V0(r):

V0~r!5a/~11br2!.

Our numerical results indicate that the direction of the co
vection rolls is quite different from the results obtained wi
a V0(r) that assumes a cutoff. Moreover, the four roll co
vection pattern appears when the long-tailV0(r) distribution
is assumed. In Fig. 6 is plotted the convection streaml
with a50.2, b50.5. As we increase the vibrational fre
quency, the high intensity regime of the convection ro
moves toward the boundary. At some parameter regime,
two roll patterns evolve to four rolls. In Fig. 7, the four ro
convection pattern is plotted.

In Figs. 6, 7, and 8 a wide parameter range has be
examined. It seems that the appearance of the two roll
tern or four roll pattern depends not only on the aspect rat
but also on the vibrational frequency and amplitude. Fut
work must focus on exploring the parameter space as we
the effect of boundary conditions to the convective patter
We now present the linear stability analysis of the tw
dimensional traffic equations.

FIG. 5. Convection pattern for large geometry ratio.~a! Convec-
tion pattern is drawn for a large aspect tratio,Nx /Nz52.0. All other
parameters remain the same as in the case ofNx /Nz51.0. Two
main convection rolls appear at the center, with another two vis
small convection rolls at the top corners of the container. The t
small convection rolls have opposite spins relative to the ma
ones.~b! Two convective rolls for the aspect ratioNx /Nz54.0 are
illustrated for the same parameter regimes. The two rolls exist n
the walls. They are separated by a wide nonconvection regi
where the velocity field equals zero.
-
.
l-

-

-

e

he

t-
s,
e
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III. LINEAR STABILITY ANALYSIS
OF TRAFFIC MODEL

Before studying the time-dependent properties of the
brating beds, any model must make sure that the fixed
solution, which is the ground state atT50 or equivalently
G50 @23#, must be stable.

le
o
r

ar
e,

FIG. 6. Convection patterns for slow mean speed: For s
mean speeda50.1, vibrating amplitudeA52.0,b50.5. Two con-
vection rolls appears for the different vibrating frequency, whe
higher frequency corresponds to a higher flow rate close to
boundaries, respectively, from left to rightv51.0 ~a! and v
515.0 ~b!.
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A. Fixed bed solution

Equations~1!–~3! assume two different fixed bed solu
tions. The first one represents a uniform granular block ch
acterized by the homogeneous density,r5rc such that
V(rc)50, andv50. But there is a secondnonuniformsolu-
tion, given by Eq.~7!. Both solutions represent fixed bed
solutions. We only consider the stability of a uniform solu

FIG. 7. Convection pattern with four rolls:~a! Four convection
roll appears when we increase the amplitude of the mean speea
50.5 with the frequencyv51.0. ~b! As we increase the vibrating
frequency, two roll convection patterns appear with a higher flo
rate close to the boundaries.
r-

tion. Let r5rc1r1 andv5v1. Substituting these into Eqs
~1!–~3!, we find thatr1 satisfies the second order equation
time:

r̈11 ṙ1 /t2m¹2ṙ12Te¹
2r150. ~8!

Assumingr15rq(t)sin(p̂mx)eiqz, we find

FIG. 8. Convection pattern with four rolls:~a! Four convection
roll persists when we increase the amplitude of the mean speea
55.1 with the frequencyv51.0. ~b! As we increase the vibrating
frequency, two roll convection pattern appears with a higher fl
rate close to the boundaries.
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r̈q1B0~q!ṙq1D0~q!Terq50 ~9!

with

B0~q!51/t1m~p̂2m21q2!, ~10a!

D0~q!5Te~p̂2m21q2!. ~10b!

For rq(t);est, it is straightforward to show that Res is
always negative, i.e., Res,0. Thus, the uniform fixed bed
solution is stable. For the stability analysis of a nonunifo
solution, see Appendix B.

B. Stability of the bouncing solution

When the system is subjected to vibrations, how do u
form and nonuniform solutions evolve to eventually produ
convective rolls? The standard way of proceeding in the
bility analysis is first to find the basic solution, and then
examine its stability by performing the linear stability ana
sis of this basic solution. The onset of convection may
identified as a point at which such a basic solution becom
unstable. In the thermal convection problem such as
Rayleigh-Bénard convection, the basic solution is the lam
nar solution with a temperature-dependent density pro
@25#. Since there exist two fixed bed solutions, we need
study the stability of these two solutions separately. In w
follows, we present only the stability analysis associa
with the uniform fixed bed solution, and show in Appendix
why the similar analysis for the nonuniform solution is no
trivial. Our analysis in what follows is based on the bel
that since there is no difference between the two deep in
the bed, the mechanism for the convection for the unifo
and nonuniform solutions might be the same. WhenGÞ0,
the basic solution associated with the uniform fixed bed
lution is also ahomogeneoussolution in density, i.e.,r
5r0 , which then undergoes harmonic oscillations. This r
resents a uniform granular block, represented by a single
@25#, moving up and down bouncing at the plate. We pre
ously termed such a solution abouncing solutionand such a
bouncing solution can be readily found by inspection of
traffic equations~1!–~3!. Its horizontal velocity is zero, bu
the vertical velocityv0(t) is given by

vz5v0~ t !52V0~r0!1V̂~r0 ,t,G!@sin~vt !2vt cos~vt !#,
~11!

where V̂(r0 ,t,G)5GV0(r0)/(11v2t2). The numerically
observed bouncing solutions in Fig. 2 may represent suc
uniform bouncing solution.

We now examine the bouncing solution in some det
which is essentially identical to a single ball dynamics, if w
focus on the motion of the center of mass of the block. T
dynamics of a ball on a vibrating plate is nontrivial for hig
vibration strength, but its trajectory obeys the simple Ne
tonian dynamics for lowG with basically two characteristics
~i! the ball moves together with the plate for some time,~ii !
the ball is launched to the space at a particular timet0 that
dependson the vibration strength. We assume that at
time of launching, the relative velocity between the blo
and the plate is such that the relative distance,D(t), between
i-
e
a-

e
s
e

le
o
t
d

f
de

-

-
all
-

e

a

l,

e

-

e

the ball and the plate starts to increase at the time of laun
ing. Hence,t0 is determined by the condition

G

11v2t2
@sin~vt0!2vt cos~vt0!#511e, ~12!

where e is determined by imposing the self-consisten
D(t5t01).0 @Eq. ~14!#. Note that Eq.~12! ensures that

~11e1v2t2!1/2<G. ~13!

For G to be order one,t needs to be of order;1/v. Next,
since the velocity is given, we find that the position of t
ball in the moving frame,D(t)5* t0

t v(t8)dt8, is given by

D~ t !52V0~r0!~ t2t0!1
GV0

11v2t2

3@cos~vt0!2cos~vt !#/v2t~sin~vt !2sin~vt0!#.

~14!

In Fig. 9 are shown typicalvz(t) andD(t) as a function of
time. Note thatD is the relative distance between the b
and the plate and thus cannot be negative:D(t) is positive
for t0<t<t1 where D(t0)50 and D(t1)50. Tf5t12t0 ,
which is a function of the vibration strengthG, is the flying
time of the ball. For a set of parameters used in simulatio
i.e., m5v5t51.0, and V0(r0)50.5, we find (t0 ,t1)
changes from (2.356,4.867) withTf52.51 for G52 to
(1.197, 5.0368) withTf53.84 for G55. For largerG, the
flying time Tf obviously increases. Note that the relative v
locity of the ball at the time of launching is not zero, i.e
v(t0)Þ0.

Let us now examine the stability of this bouncing sol
tion. Let r5r01rL and v 5 v0(t) ẑ1vL and substituter
andv into Eqs.~1!–~3!. Taking only the linear term, we find

] trL1r0¹j•vL50, ~15a!

] tvL5
Te

r0
¹jrL2

vL

t
1 ẑ

V08~r0!

t
rL@211Gsin~vt !#

1m¹2vL , ~15b!

wherej5z2*0
t v(t8)dt8[z2D(t). j measures the point o

the granular block in thebox frame that undergoes vibra
tions. Now, taking the divergence¹j of Eq. ~15b! and sub-
stituting r0¹j•vL52] trL , we find the equation forrL :

~L01L1!rL50, ~16!

where

L05] t
22Te¹j

22m¹j
2] t , ~17!

L15t21] t1r0t21V08~r0!@211Gsin~vt !#]j . ~18!

In order to study the stability of the bouncing solution, w
now seek a solution of the form

rL5rL,m,q~ t !sin~pmx/L !eiq~j1D!. ~19!
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FIG. 9. Bouncing solutions. The velocity
v0(t) ~lower one!, and the position~upper one!
of the ball relative to the plate as a function o
time. The ball is launched att5t0 @Eq. ~14!# with
a positive velocityvz(t0).0, and flies in the air
until it hits the plate again att5t1 with D(t1)
50. The ball stays at the plate and is relaunch
at t5t012p/v.
we
d in
ion

the

y
vior
we
Note thatm is an integer andj1D[z. Substituting Eq.~19!
into Eq. ~16!, we obtain

r̈q1B~q!ṙq1 iC~q!ṙq1D~q!rq1 iE~q!rq

5 iL q~ t !ṙq~ t !1Mq~ t !rq~ t !1 iNq~ t !rq , ~20!

where

B~q!5B0~q!5m~p̂2m21q2!11/t, ~21a!

C~q!522qV0~r0!, ~21b!

D~q!5D0~q!2q2S V0
2~r0!1

G2V̂2

2
~11v2t2! D ,

~21c!

E~q!5qm~p̂21q2!2
r0qV0~r0!

t
, ~21d!

Lq~ t !522qGV̂@sin~vt !2vt cos~vt !#, ~21e!

Mq~ t !5q2Fv2t221

2
G2V̂2cos~2vt !2vtG2V̂2sin~2vt !G ,

~21f!

Nq~ t !52G
r0qV08

2
sin~vt !, ~21g!

wherep̂5p/L with L the box size andrq(t)5rL,m,q(t). For
the most unstable mode, we setm51. We now change the
time, t→t01T and focus on the one oscillation fromT50 to
T52p/v. Then, Eqs.~21e!–~21g! are replaced by

Lq~ t !→22qGV̂$@sin~vt0!2vt cos~vt0!#cos~vT!

1@cos~vt0!1vt sin~vt0!#sin~vT!%,
Mq~ t !

→q2G2V̂2F S v2t221

2
cos~2vt0!2vt sin~2vt0! D

3cos~2vT!2S v2t221

2
sin~2vt0!1vt cos~2vt0! D

3sin~2vT!G ,
Nq~ t !→2

Gr0qV08

t

3@sin~vt0!cos~vT!1cos~vt0!sin~vT!#.

The stability of Eq.~20! is highly nontrivial because it
contains the time-dependent inhomogeneous term, and
employ here an approximation method that was first use
Ref. @8#, namely, we replace the time-dependent funct
Lq(T), Mq(T), and Nq(T) by their averageover one pe-
riod, namely,^Lq(t)&5Tf

21*0
TfdtLq(T) with Tf5(t12t0),

where the time-dependent parts inLq(t), Mq(t), andNq(t)
in Eq. ~21! are replaced by their average values over
flying time:

sin~nvT!→
1

nvTf
@12cos~nvTf !#,

cos~nvT!→
1

nvTf
sin~nvTf !,

wheren51 or 2. The validity of such an approximation ma
be justified since we are interested in the long-time beha
and the system continuously oscillates in time. Hence,
have replaced theinhomogeneousEq. ~20! into thehomoge-
neousone:
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r̈q~T!1B~q!ṙq~T!1 iC̃~q!ṙq~T!1D̃~q!rq~T!

1 iẼq~T!rq~T!50, ~22!

where

C̃~q!5C~q!2^Lq~T!&, ~23a!

D̃~q!5D~q!2^Mq~T!&, ~23b!

Ẽ~q!5E~q!2^Nq~T!&. ~23c!

The stability of the homogeneous equation@Eq. ~22!# with
time-independent coefficients is easily determined by a s
dard linear stability analysis, namely, we setrq(t)5est and
substitute this to Eq.~22! to obtain
ili

g

th
,
fi-

le

r
s

n-

s21@B~q!1 iC̃~q!#s1D̃~q!1 iẼ~q!50. ~24!

The condition for the instability is when the perturbatio
grow in time, i.e., Res.0. Note that the solution of Eq.~24!
is given by

s652
B~q!1 iC̃~q!

2

6
1

2
A@B~q!1 iC̃~q!#224D̃~q!24iẼ~q!. ~25!

In order to extract the real part, we notice that the argum
of the inside the square root may be written as Reif with R

5@(B22C̃224D̃)21(2BC̃24Ẽ)2#1/2 and tanf52(BC̃

22Ẽ)/(B22C̃224D̃). The real part ofs6 ,
Re@s6#52
B

2
6A1

2
FAS B22C̃2

4
2D̃ D 2

1S Ẽ2
1

2
BC̃D 2

1
B22C̃2

4
2D̃G . ~26!
we
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When the real part of Eq.~26! becomes positive, the
bouncing solution becomes unstable. Hence, the instab
condition for the most unstable branch becomes, Re(s1)5
2B/21R1/2cos(f/2).0, which is rewritten by the following
inequality:

~BC̃22Ẽ!2>B2~B22uB22C̃224D̃u!. ~27!

Since the granular block is only in motion for the flyin
time, 0<T<Tf , but sits on the plate forTf,T,2p/v, the
stability of the granular block needs to be determined by
effective instability condition, namely, for the flying time
Eq. ~27! is operative, but for the rest of the time, the coef
cients for the fixed bed solutions,~10a! and ~10b!, must be
used. We thus define the effective instability condition:

seff5Tf@~BC̃22Ẽ!22B2~B22uB22C̃224D̃u!

1~2p/v2Tf !2B2~B22uB224D0u!.0. ~28!

When seff.0, the bouncing solution becomes unstab
Since B(0)5mp̂211/t, C̃(0)5C(0)2^Lq(0)&50,
D̃(0)5D0(0)2^Mq(0)&5D0(0)5Tep̂

2, Ẽ(0)5E(0)
2^Nq(0)&50, we find seff(q50)52B(0)2@B(0)2

2uB2(0)24D0(0)u#2p/v. If B2(0).4D0(0) or (mp̂2

11/t)2.4Tep̂
2, then seff(0),0. If B2(0),4D0(0), then

seff(0)52B2(0)@B2(0)22D0(0)# can be either positive o
negative. Ifseff(0).0, then the bouncing solution is alway
unstable. This determines the criterion for the existence
the bouncing solutions in the traffic equations: (mp̂2

11/t)2,4Tep̂
2 and (mp̂211/t)2.2Tep̂

2. And thus, if

~m1p̂211/t!2<2Tep̂
2

ty

e

.

of

then uniform bouncing solutions do not exist. Otherwise,
expect the bouncing solutions to appear.

In Fig. 10 is displayedseff as a function of the wave
numberq for t5v, m51, r050.53, V0(r0)50.5, V08(r0)
5210, L532, andTe52.0. Note that forG,Gc , seff c is
always negative, and thus the bouncing solutions are sta
As we increase the control parameterG, the peak ofseff
moves up and becomes zero at the criticalGc52.27, which
signals the instability of the bouncing solutions, and thus
identified as the onset of convection. ForG.Gc , there is a
band of wave numbers whereseff.0. The maximum growth
rate isqc51.11 forG52.32 andqc50.95 atG52.27, which
are of order one. The corresponding wave numbers for
convective rolls arel52p/k;6. Since there are two rolls in
a box of sizeL532, the wavelength of the convective rolls
about 8, and our analysis is consistent with the numer
results. For other parameters, the qualitative feature is
same, namely, forG,Gc , seff,0 for all q, and at a critical
Gc , the local maximum ofseff crosses zero atq5qc , and
for G.Gc , there is a band of wave numbers for whichseff is
positive @24#.

IV. DISCUSSION

We conclude this paper by briefly reviewing the prese
status of the convective instability of vibrating beds a
simulations of the models presented here~modelB! and else-
where@1#. From our analytical as well as numerical analys
we confirm that the bouncing motion of particle collectio
plays an important role in both modelA and modelB. We
have, however, several issues that should be resolved in
near future.

First, we discuss the role of boundary conditions. W
have employed no slip boundary conditions at the walls a
the plate. Further, we have put the rigid walls at the top a
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FIG. 10. The effective instability condition
seff(q) ~vertical axis! is plotted against the wave
numberq for different vibration strengthG. At
the critical Gc52.27, the local maximum of the
growth rate crosses the zero. ForG52.2,Gc ,
seff,0 for all q, while for Gc,G52.32, there is
a band of wave numbers for whichseff.0.
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thus suppressed the surface motion. Unlike the fluids, gra
lar materials have been shown to exhibit very different m
tion near the wall in a zet flow experiment under gravity
Caram and Hong@20# and there has been some attempt
use the negative or positive slip to control the convect
patterns@7#. Jenkins and Askari@31# derived slip boundary
conditions at the wall based on the hydrodynamic equati
derived from dissipative Enskog equation. However, m
detailed studies on the boundary conditions at the wall
required.

Second, we discuss the role of interstitial fluid. The mo
A @8# assumes no interstitial fluid such as air, and it pred
a series of rolls for the vertically large aspect ratio. ModeB
on the other hand predicts that the convection suppress
the bulk region but is confined near the surface, which
pears to be in accordance with experiments and with
results of the two-fluid model with an interstitial fluid@26#.
Perhaps, the origin of drag, or the relaxation term, whethe
is coming from friction at the walls, or from the viscou
effect of the interstitial fluid, or from long range correlation
among voids, may not be relevant once it is present. H
ever, the justification of its presence in the absence of in
stitial fluid may require further studies, because it raises
validity of traffic equations at the conceptual level.

The suppression of the convection in the bulk is due to
locking mechanism of grains for near the closed packed d
sity, which was taken into account in the present modelB by
a cutoff inV(r), namely,V(r)50 for r.rc . The results of
model B, in particular the migration of convective rolls to
ward the surface~Fig. 4! and to the side walls~Fig. 5!, seem
to be more realistic and closer to the experimental and
simulation results than those of modelA. We certainly need
more extensive studies of both modelA and modelB to make
quantitative comparison with experiments.

Third, Knightet al. @32# studied the velocity profile of the
grains in a vibrating bed and measured the dimension
velocity profile,n(r)[v(z,r )/d, whered is the particle di-
ameter, and bothr ~the radius! andz ~the vertical height! are
measured from the center andr5r /r c . They reported that
u-
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the velocity profile obtained by the following equation fi
the experimental profile quite well:

d2n~r!

dr2
1

1

r

dn~r!

dr
2n~r!50.

Note that the above equation appears to be consistent
the traffic equations at the closed packed density, where
relaxation functionV0(rc)50 and the traffic equations~2!
and~3!, with the addition of the friction term,2vx /t in Eq.
~2!, reduce to the modified Darcy’s law:

m¹2v2v/t50,

which is precisely the equation empirically obtained
Knight et al. It will be interesting to actually compare th
velocity profile of the granular flows in other geometri
such as the pipe flow, or a hopper flow with those predic
by the traffic equations, which in turn may enable one
identify and determine the parameters in the traffic eq
tions. In this case, knowledge of the precise magnitude of
slip @20,31# at the wall is required.

Finally, future work must focus on completing the stab
ity analysis for the spatially nonuniform solutions~Appendix
B! and its instability mechanism along with the nonline
analysis. In addition, the study of the surface instability a
its connection to the surface fluidization and excitations
well as the study of horizontal vibrations and the onset
liquefaction @9,27# remain important open problems, whic
may shed insight into the oscillons@28# and other related
surface instabilities@29#. Such studies are currently unde
way and will be reported in future communications.
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APPENDIX A: DERIVATION OF TRAFFIC EQUATION
FROM ENSKOG EQUATION

We present here a brief derivation of the traffic equatio
from the Enskog equation. We first recall how one obta
the hydrodynamic equation from the Boltzmann equat
@21#:

] f

]t
1v•¹r f 1F•¹v f 5JB , ~A1!

whereF is the particle distribution function, andJB is the
collision integral. Ifx is summation invariant, i.e., thenx1

1x25x181x28 , where the prime refers to the velocities
the two colliding particles after the collision, an
*d3px(r ,p)JB50. Now, one can derive hydrodynam
equations by multiplying*d3px(r ,p) with Eq. ~A1! as de-
tailed in Huang@30#. We now just focus on the Navier
Stokes equation:

S ]

]t
1u•¹Du5F/m2

1

r
¹S P2

m

3
¹•uD1

m

r
¹2u.

~A2!

For granular materials, we need to take into account
facts: first, particles are not point particles, but hard sph
particles with finite diameterD, so one should use the En
skog equation instead of the Boltzmann equation@21#. Sec-
ond, we need to take into account gravity and friction,
which the external force termF in Eq. ~A2! may be replaced
by

F/m52gẑ2gu. ~A3!

The second term in Eq.~A3! is due to the friction. In the
absence of interstitial fluid, its origin may lie in the friction
at the front and rear glass plates as well as at the walls, o
the long range correlations among voids. However, we p
out that its presence in the absence of interstitial fluid ne
more rigorous justification. Further, for the Enskog equati
there is collisional transfer. So, the pressure tensor has
components:

Pi j 5Pi j
kinetic1Pi j

CT. ~A4!

The lowest order to the collisional transfer isPzz
5x(r)r2/2 with x5(12r/2)/(12r)3, wherex is the two
particle equilibrium correlation function at the contact po
of two colliding particles. It is known that the Enskog pre
sure has the following two components:

P5Tr~11xr/2!5Pideal1P1 . ~A5!

Let us focus only on thez component. Then, the Navier
Stokes equation becomes

S ]

]t
1uz

]

]zDuz52g2guz2
1

r

d

dz
P1~viscous terms!.

~A6!

Now,

dP/dz5T@r81x8r2/21rr8x#
s
s
n

o
re

r

in
t

ds
,
o

t

and the right-hand side of Eq.~A6! becomes

2g2guz2
1

r

d

dz
P1~viscous terms!

52g2
T

r

dr

dz
2T~x8r/21r8x!2guz

52
T

r

dr

dz
1

@V~r!2uz#

t
, ~A7!

wheret5g21 and

V~r!52
T

g
@b1x8r/21r8x#.

For a steady stateuz50, we find

T

r

dr

dz
5

V~r!

t
~A8!

or equivalently

r8~11rx!1rb1x8r2/250 ~A9!

with b5g/T. Hence, we have shown that thez component
of the Navier-Stokes equation reduces to the traffic equat

S ]

]t
1uz

]

]zDuz52
T

r

dr

dz
1

@V~r!2uz#

t
1m¹2uz .

~A10!

For x andy components, we simply use the Boltzmann equ
tion.

The actual form ofV(r) depends onx, which is un-
known. If we use the widely used form forx @31# and de-
mand self-consistency, then we find that the mean speed
the following form:

V~r!52
g

g

2~12r!319/222r

2~12r!3
.

If we assume that the steady state is given by the Fe
distribution @23#, then we find

V~r!52
g

g

4217r18r2

4~12r!2
.

In either case, the coefficient is proportional to the grav
This is the reason for the functional form taken in Eq.~4! in
the text. We caution that the functional form forV(r) given
above may not be taken too literally.

APPENDIX B: STABILITY ANALYSIS OF A SPATIALLY
NONUNIFORM FIXED BED SOLUTION

We show here why the stability analysis of a spatia
nonuniform fixed bed solution is complicated. In the absen
of vibrations,G50, and the solution of this class,r0(z), is
given by Eq.~7!. Since the solution is spatially inhomoge
neous, for smallG, we seek bouncing solutions that are on
a function ofz:
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r~z!5r0~z!1r08~z!s~z!eivt, ~B1!

vz~z!5v~z!eivt, ~B2!

wherer08(z)5dr0(z)/dz. We put Eqs.~B1! and ~B2! into
the traffic equations~1!–~3! and linearize to obtain

1

r0~z!

dr0~z!

dz
ivs~z!1S d

dz
1

1

r0

dr0

dz D v~z!50, ~B3!

2c0
2
r08

r0

ds~z!

dz
2 ivv~z!2S 1/t2m

d2

dz2D v~z!5
G

t
V„r0~z!….

~B4!

Let Q(z)52(1/r0)dr0 /dz521/tc0
2V(r0). Then, we find

equations forQ(z) andv(z):
w

L

.

B

,

et

ys

y

2 ivQ~z!s~z!1S d

dz
2Q~z! D v~z!50, ~B5!

2c0
2Q~z!

ds~z!

dz
1S iv11/t2m

d2

dz2D v~z!5c0
2GQ~z!.

~B6!

We need to find the solutions for Eqs.~B5! and ~B6! that
both satisfy the boundary conditions,s(z),v(z)→0 as z
→`, which appears to be nontrivial if we relax the conditio
thatG is not a small parameter. Even though we are lucky
find the solutions, the stability analysis around these so
tions still presents difficulties.
E
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