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Traffic equations and granular convection
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We investigate both numerically and analytically the convective instability of granular materials by two-
dimensional traffic equations. In the absence of vibrations traffic equations assume two distinctive classes of
fixed bed solutions with either a spatially uniform or nonuniform density profile. The former one exists only
when the functiorV(p) that monitors the relaxation of grains assumes a cutoff at the closed packed density,
pe, With V(p.) =0, while the latter one exists for any form ¥f Since there is little difference between the
uniform and nonuniform solution deep inside the bed, the convective instability of the bulk may be studied by
focusing on the stability of the uniform solution. In the presence of vibrations, we find that the uniform solution
bifurcates into a bouncing solution, which then undergoes a supercritical bifurcation to the convective insta-
bility. We determine the onset of convection as a function of control parameters and confirm this picture by
solving the traffic equations numerically, which reveals bouncing solutions, two convective rolls, and four
convective rolls. Further, convective patterns change as the aspect ratio changes: in a vertically long container,
the rolls move toward the surface, and in a horizontally long container, the rolls move toward the side walls.
We compare these results with the those reported previously with a different continuum model by Hayakawa,
Yue, and HongPhys. Rev. Lett75, 2328(1995]. Finally, we also present a derivation of the traffic equations
from Enskoq equatior{.S1063-651X%98)09410-0

PACS numbd(s): 81.05.Rm, 47.20:k, 46.10+z

[. INTRODUCTION results based on two-dimensional traffic equations, and sec-
ond, we carry out the linear stability analysis of the traffic

This paper is concerned with the numerical as well as thequations and uncover the mechanism of granular convection
analytical analysis of two-dimensional traffic equations,as a supercritical bifurcation of a bouncing solution. This
termed modeB in the literature[1] with an aim to under- mechanism for the granular convection is essentially identi-
stand the convective instability of granular materials. It hascal to the previously obtained scenario for a different con-
been known since Farad@®] that the granular materials in a tinuum model, termed modél [8]. However, detailed simu-
vibrating bed develop permanent convective rolls when theations of these two continuum models reveal distinctively
strength of the vibration exceeds a critical value. Unlike thegifferent convection patterns for different geometries and pa-
well known Rayleigh-Beard thermal convection in fluids, rameter ranges. The most notable departure between the two
however, the origin of the granular convection has remainegs the migration of convective rolls toward the surface and
relatively unexplored since its discovery, but recently twoi,ward the walls in modeB, as the aspect ratio changes.

frxmultane;)ustlg?rks from th(iheéperlmelr;tal ?[@ 4] with o1 TiS I in sharp contrast with the results of modelwhich
1€ use ot a or x-ray method as well as from compu erpredict a series of rolls in the container. Further, the simula-
simulations based on the distinct element metf®dhave

substantially aided our understanding through visualizationt.Ion resilts of modeB yield rich dynamical behaviors as we

Yet, the theoretical efforts to uncover the basic mechanism robe deeper into thg parameter space, yet thg analytical
of this granular convection have not been remarkable, st“?tructure_of the nontrivial pa_ltterns seems to be quite complex
largely focused on producing convective patterns througl‘?‘n_d requires further extensive Stl_ld'es in the futur_e_. Our ana-
computer models and simulations. While much impressivdYtical study here focuses exclusively on the stability analy-
experimental data are currently being piled up, theoretica$'S Of @ uniform bouncing solution, but there exists a second
developmen{6-10] in this area seems to be still far from class qf solutions tha_t are spatially _n_onumform. The stability
complete. In order to have a deeper understanding of thanalysis of the latter is highly nontrivial and we only present
granular convection, we find it essential to come up with a& brief description of it in Appendix B. Fortunately, how-
reasonable continuum model that contains a minimum numeVver, since there is little difference between the uniform and
ber of control parameters yet captures some of the essence lgnuniform solutions deep inside the bed, we expect that the
granular convection. The goal is certainly to explore analyti-uniform bouncing solution may capture the essence of the
cally and numerically the instability mechanisms that lead tabulk instability. For details, see the text.
many fascinating complex nonlinear dynamics behaviors. This paper is organized as follows. We first define the
Our aim here is twofold: We first present such a con-model equations in Sec. Il and make an attempt to derive the
tinuum model along with previously unpublished numericaltraffic equations from the Enskog equation in Appendix A.
We will then present numerical results in Sec. I, and provide
some insight into the stability mechanism of the granular
*Electronic address: dh09@Iehigh.edu convection in Sec. lll. We also discuss several unresolved
Electronic address: sufrank.yue@citicorp.com questions in Sec. IV. We now turn to the main text.
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Il. TWO-DIMENSIONAL TRAFFIC EQUATIONS z direction, which is represented by an average function
AND GRANULAR CONVECTION V(p,t) with the relaxation timer. The net effect is for the
Apart from its wide application to traffic flow problems void (or par_tlcle t.o adWSt its speedg_zz around the average
valueV(p) in a given timer. The origin of such a term has

[12], the traffic equation$13—19 have recently been pro- . . .
posed as an alternative continuum model to the Navierpeen dl_scussed by HO@ al.[16] In an attempt to mtroduce_
correlations among grains or voids in the diffusing void

Stokes equation, in investigating a variety of dynamical re- . .

sponses of granular materials. Examples include the granul Od‘?' (DVM) [20]'. In the_DVM, the Vf'd speed IS o_nly a

relaxation under repeated tappip6], density waves and unction of local void .de.ns'ty’ namely,z'— Vip) + dlfoSIO.n

jamming and clogging phenomefial, 14,17, 1/ spectrum term. However, a void is a com_pre55|ble hydrodynamic ob-

of hopper flow[18], and granular segregatigd9]. But we ject that _changes_and adjusts its shape to .CO“fO_”?“ to the
§urround|ngs, not instantaneously, but in a given finite time

point out that, unlike the studies to be presented in this pape : So, it may be more appropriate to write down the time-

almost all of the studies thus far have focused exclusively orge endent equation for the velocity in & manner given by E
onedimensional traffic equationgl3—19, which certainly P 9 y 9 Y EG.

will not be able to describe the granular convection. Henceggngi]fn 'It'?]eSInr]gls):ar?ij%?iuihflge?el;i;utﬁ):t ?oc?e“éinrr:gcatl)e
we first present here the two-dimensional version of the traf- Y. P P Y

' . : ) effectively equivalent to assuming a drag force acting on a
fic equationd1], termed modeB in Ref. [1] void, which is reasonable if there is interstitial fluid such as

air. In the absence of interstitial fluid, the only reasonable

J dpvy dpv
_P+px+Pz:

g o r 0, (1 conclusion is to assume that its origin lies in the frictions of
the front and the rear glass of the container and from the
2 2 wall.
9vx UX%JFUZ%:_C(Z)/pa_erM(a_?jL ‘9_1)2*) The coupled equation&l)—(3) are fairly similar to the
ot X 9z X 4 two-phase moddR6] of a fluidized bed that has been widely
) used for mixtures of gas and granular particles. As shown in
Appendix A, functions in the traffic equatiori$)—(3) may
& v % %: V(L)_UZ_ 2 ‘9_" be inferred from the Enskog equati¢dl]; namely,—v,/7
at - “raz T ox T O oz is the drag term imposed externally on the particle, or by
o vibrations. Further, the Enskog pressufigs[ 1+ f(p)p/2]
+ 1 _25+ _25) (3)  with f(p) the correlation function, produces an extra term
axs oz V(p) in addition to the hard sphere pressiliie In this case,

we make an important observation that the coefficient of
V(p) is proportional to the gravitg, which will enable us to

. . jncorporate the vibrations of the bed. This observation makes
proceeding further, we point out some OT the conceptua ense, because the strength of the mean s(asd termed
problems associated W'th. the traffic eqqatlons. F!rst of a"the drift velocity is determined by the gravity and thus it is
the momentum equation in the conventional Navier-Stokeg, jite physical to assume that the mean speed of the void is
equation Is written as also proportional to the gravity as demonstratedli] and
Appendix A. In the moving frame of reference of the vibrat-
ing bed, the mean spe&lp) depends not only on the den-

whered/dt is the total derivative, and; is the stress tensor Sity but also on the way the box is shaken. In the moving
representing all the internal forces, afg is the external frame, the effective gravityg’=—g+Aw“cos(wt), is the
force imposed on the system. The reason the internal forceé¥)ly time-dependent factor involved in the mean speed
are written as a divergence is because of the momentuM(p). Therefore, without the loss of generality, we expect
conservation and the total sum of the volume force musthat the mean speed of the granular flow alongztigection
vanish because of Newton’s third law. Further, since the volassumes the following form:

ume integral of the divergence can be replaced by the surface . C .

integral, we must impose the boundary condition that the V(p)=Vo(p)9'=Vo(p)[ —1+ I sin(wt)], 4
normal component of the stress tensor vanishes at the syfy oreT = Aw

face. On the other hand, in the traffic equations the momen °/g with A the amplitude of the vibration, and
tum equations(2) and(3), are not written this way, and this @ the vibrational frequencyo(p) is the mean speed in the

) ! e . . > absence of the vibration, such as the case in the hopper flow.
may call for questions in utilizing the traffic equations in

i . o . In one-dimensional traffic equation, we have us@l:
granular convection. In the presence of interstitial fluids such g bl

as air, the use of traffic equations may be justified in the Vo(p)=al(1+ Bp?). (5)
sense that the relaxation term may be effectively equivalent

to assuming a drag force as was done in Appendix A. HowNote that the functional form d¥, is not unique, and other
ever, in the absence of air, justification of the drag term isexponentially decaying functions have also been proposed
difficult and our conjecture, which has yet to be proven, is[13]. The Vy(p) assumed above has a long tail when the
that the long range correlations among voids may produce density increases, which might be unphysical since there
term that is not written as the divergence. To be more speshould be a critical density,., for any granular material, at
cific, we point out that the difference between moBdll]  which all particles will be locked in if the density exceeds
and modelA [8] is the presence of the relaxation term in thethat critical density. This critical density may be proportional

wherec§~Te is the sound speed, anpdis the viscosity. One
may add—uv,/7 on the right-hand side of Ed2). Before

dUi/dt:—&ijO'j“‘Fi,
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This represents a situation where particles pile up from
the top to bottom with a certain density distribution. For
simplicity, the mean speed is assumed to satisfy(&q.The
mean speed as a function of density is plotted in Fig).1
When the density of the granular particles exceeds the criti-
cal density, say, for examplg,.=0.501, the particles be-
come locked and have a steady-state densityp.. If we
solve Eq.(7) and plot the density profile as a function of
[Fig. 1(b)], we can see that the uniform density profile is
created close to the bottom of the plate, and then the density
decreases linearly to zero as we move to the top of the con-
tainer. Physically, this is acceptable if we notice that when
055 ——— the particles near the bottom are locked, they act more like a
0.50 ] solid. On the other hand, those particles near the surface are
rather loosely packed and ready to move, which is more like
a traditional fluid, where the density linearly decreases as the
0.40 | 1 altitude increases. Note that the granular bed is not subjected
035 | ] to vibrations at this time and thus this is a fixed bed solution.
Furthermore, the total number of particles is conserved by
the mass conservation law of Ed.). The flat region in the
0.25 | 1 density profile can be extended all the way to the surface by
_ A . changing the exponerng. We emphasize that the nonslip

(b) 0 01020304 025 0.6 0.7 0.8 09 1 fluid boundary conditions have been imposed at the top and
bottom plates as well as at the side walls in solving the

FIG. 1. (a) Mean speed/(p) as a function of density is plotted equations numerically, namely, =0 andv =0 [8].
above(a), with the cutoff densityp.=0.501 and8=1/2. (b) Static Second, a spatially uniform solution. There is, however, a
solution is solved analytically and the densjtyis plotted as a second class of solution that exists only whéfp) has a
function of the height, wherez=0 is the bottom of the container. cutoff. This solution is a spatially uniform solution with the
The numerically obtained result solution of E¢$)—(3) is consis-  density given by the closed packed densijty, everywhere
tent with this up to a very high accuracy. with V(p.)=0. Numerical simulations of the traffic equa-

tions reveal that it is the spatially nonuniform solution that is
or equal to the closed packed density. Thus, we have entealized in simulations. But the stability analysis of the uni-
ployed a different form in our numerical simulations that form solution clearly shows that this solution is stable, too,

Vo ()

0.8 1

(a)

0.45 ¢

0.30 1

assume the fornFig. 1(a)]: and thus it must be realized with presumably suitable bound-
ary conditions. Further, deep inside the bed, there is very
V(p)=(pc—p)PO(pc—p), (6) little difference between the uniform and nonuniform solu-

tions, and thus the convective instability inside the bulk may
where we have used a step functi6fp.—p)=0 whenp  be investigated by focusing on the stability of the uniform
=p.. A physically reasonable choice gfmay be such that bouncing solutions. In the absence of the rigorous stability
V/(p)<eo. [For B<1,V'(p) diverges ap., and thus in our analysis of the nonuniform solut.ion, this is qnly our guess.
stability criterion, we set the density of the uniform solution Future work must focus on the rigorous stability analysis of
slightly less than the closed packed dengiBefore investi- the nonuniform solutiorisee Appendix Band compare its

gating Eqs(l)_(s) numerica”y, we first check the consis- result to those of the uniform solution obtained in Sec. lll.
tency. Before presenting the stability analysis, we first present nu-

merical results.

A. Consistency check: static solutions without vibrations

It is worthwhile to examine a few special cases not only B. Numerical results

for the sake of general |imitati0n, but also to check the nu- We now investiga‘[e the time_dependent phenomena nu-
merical accuracy. Wheli =Aw?/g=0, which corresponds merically. Numerical solutions are obtained by two different
to the case without the vibration, which we also term “the algorithms for the rectangular boundaries. The first one is the
fixed bed solution,” we expect a static solution whare center-difference method, which has the accuracy of second
=0 in all momentum equations. We note that theretare  order in space and first order in time. The second method
classes of static solutions. employed here is the Runge-Kutta algorithm, which has the
First, we discuss a spatially nonuniform solution. Regard-accuracy of second order in space and third order in time.
less of the functional form o¥(p), we find by inspection The results show that both methods give consistent conclu-
that there exists a spatially nonuniform static solution thassions for the same boundary conditions. For most of the
satisfies the following differential equation: cases, we set the grid number equaNig=32 andN,=32 in
order to improve the accuracy while accommodating the
% CPU cost. Lower or higher grid numbers have been exam-

Co
Vo(p)= ?Vp' ined as well, but no significant changes have been found.
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Initially, the uniform solution is assumed, and typically four 0.001
cycles are taken to calculate the average of the convection

after the stable periodical solution appears at each site in the

lattice. In the stream line plot, all of the vector flow arrows

are normalized by the maximum speed. Numerically, we ob-

serve two distinctive classes of solutions: the first one is the X 0.000 WW
bouncing solutions, and the second one the convective rolls.

We first examine the bouncing solutions. Note that the set of
parameters that correspond to physical situations might be
wl27=20 Hz, T,~3, andu=1/R~0.5 with the Reynolds
numberR=UL/us~2, because the kinetic viscosity of the -0.001 , , , , ,
granular materialp~5x10"2 m%s and the typical veloc- 10000 15000 20000 25000 30000 35000 40000
ity U~10 cm/g[8]. For pure numerical reasons, however, in @) !
what follows, unless mentioned otherwise, all the simula- 0.54
tions are conducted with the parametetss l,w=1,7=1

andT.=2, L=32 with Vy(p) given by Fig. 1.

052 |
1. Bouncing solutions withI'< T’

For a fixed set of control parameters, bouncing solutions, o
first termed in[8], appear when the vibration strengfhis 0.50 r 1

less than the numerically determined critical valiyge=1.5.
Upon increasind’, this bouncing solution becomes unstable
and bifurcates into a different branch and convective rolls 048 |
appear. We have examined the case where the vibrational
acceleration is less than the gravity, in other words, the di- (b)
mensionless variablE is less than 1, which is certainly the

regime below the critical strength. In real situations, For FIG. 2. Bouncing solutions fofa) the velocityv, and (b) the

<1, nothing much really happens inside the box except perdensity at the same fixed locatiox,¢) =(15,15), where no con-
haps the volume decreases due to settling caused by vibreection rolls appear and the bulk of the particles moves as a single
tion. However, in our simulation, due to the presence of theparticle.I'<I';.

top layer, which suppresses the complicated surface motions

of the particles, we expect the bouncing solution to appear In Fig. 3@ convection patterns are illustrated fér
even forl'<1. We have performed the simulation using dif- =2.25>T'¢ by plotting the streamline of the velocity field,
ferent initial conditions such as a uniform density distribu-WhereVo=(p.—p)”6(p.— p) with =2/3 andp.=0.501 as
tion, a linear density distribution, or a fluctuation in the ve-gdiven in Fig. 1, is used. Notice that the flow direction close
locity field. For all cases, we have found that after ato the wall is in the downward direction, and at the center of
relatively long CPU time, the convection pattern disappearsthe container, the particles try to move {iNote that the tail
which implies that the convection does not persist in thisof the arrow is the direction of the flow, so the velocity
parameter regime. However, if we measure the local densitprofile is up at the center. The same applies for Figs. 6, 7,
or velocity at different locations, we clearly observe oscilla-and 9] The density profile is also plotted in Fig(t8, where

tory solutions that persist everywhere inside the containethe average of the density over one period remains close to
This is termed the “bouncing solution” that exists before the the static solution. At any given time the density profile var-
onset of the convection: the bulk of the granular materiai€s around such an average velocity.

oscillates up and down, like a single solid ball, with a central Next, it has been found that the geometry plays an impor-
frequency of the vibrating container and some harmonicstant role in the convection pattern formatipn 22 and we
The harmonic oscillations of the density and velocity at the€xamine its effect on the convective instabilities. For ex-

same lattice site are displayed in Figéa)2and 2Zb). ample, the change of the aspect rditefined as(width)/
(heighd] may affect the relative position, the number of con-

vection rolls, and the intensity of the convection with respect

to the same vibration parameters. We have examined two
WhenT'>T., the bouncing solutions disappear and theparticluar cases:

permanent convective rolls appear inside the bulk. In order First, the numerical results displayed in Figga)4and

to view this slow convection, we have to take the average ofi(b) show that the location of the convection rolls migrate

the velocity field over many periods. Typically four cycles when the aspect ratio changes. For the aspect riatioN,

are used, since the amplitude of the convection is relatively=0.5, convection rolls move toward the top of the container,

small in comparison to the amplitude of the vibration. This isand the particles close to the bottom are almost locked, al-

true in experimental systems as well. In the stream-line plotlowing no relative motion to exist. This is consistent with the

we have normalized the velocity field by taking the maxi- experiments and MD simulation results. Convection rolls are

mum velocity component as the maximum length of the arshown in Fig. 4a) and the corresponding density profile is

rows. plotted in Fig. 4b). Note that the stability analysis of model

10000 15000 20000 25000 30000 35000 40000
t

2. Convective domain witl'>T"
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FIG. 4. Convection pattern for a small aspect rahQ/N,
FIG. 3. Convection pattern and density profil@ When I’ =0.5. All other parameters remain the same as in the case of
>T"., convection patterns are illustrated by plotting the streamlineN, /N,=1.0.(a) The two convection rolls move to the top region of
of the velocity field, where the velocity field is normalized by the the container and most of the particles close to the bottom are
maximum velocity component, , with V given by Fig. 1.(b) The locked during the whole vibration cycles. This can be verified in the
density profile as a function of position. The average of the densitydensity profile at a fixed point=16 (b), where the time-dependent
over one period remains close to the static solutioh and at any  density curve(circle) varies around the static solutiqoross, but
given time the density profilécircle) swings around such an aver- much less at the bottom than at the top regime.
age velocity.
A [8] predicts a series of rolls when the vertical axis in_ahround th? harrow rig|me of §|de .boungan?s, represerr:ted by
creases as a multiple of the horizontal width. The form oft € zero intensity o convectiofFig. 5b)]. It seems that
. . convection rolls only appear close to the boundaries, which
V(p) with a cutoff at the closed packed density seems to btlendicates that the friction on the wall presumably plays a
crucial in capturing the real convective patterns. Further, the. P y play

average density curver() is very close to the static solution significant role in the origin of the vibration-induced convec-
/erag 1Ly y : ; tions. Such observations are consistent with the observations
without the vibrations. The second curve ) is the density

profile at the stop time, which clearly shows that the den- made by Taguchi in molecular dynamics simulatigRg].

sity profile varies in time around the equilibrium density pro-
file.

Second, we have also examined the case with the large While we have not systematically examined the stability
aspect ratioN,/N,=2.0 [results are shown in Fig.(&], diagram of the many-dimensional parameter space, we report
where the width is twice larger than the height. Here, fourhere a few cases simply to show the richness of the problem
convection rolls appear with two small ones near the topssociated with the traffic equations. In the previous argu-
cornergFig. 5@)]. If we extend the width even longer to the ments, we have only assumed thNg{(p) likely has a cutoff
aspect ratioN, /N,= 4, the convection pattern will only exist when the density exceeds a critical densi¢ which the

3. Pattern dependence ony\(p)
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FIG. 5. Convection pattern for large geometry raf@.Convec- S
tion pattern is drawn for a large aspect tratiy,/N,=2.0. All other

parameters remain the same as in the casbl,gN,=1.0. Two 0 5 1'0 1'5 2'0 2'5 3'0

main convection rolls appear at the center, with another two visibld®
small convection rolls at the top corners of the container. The twc
small convection rolls have opposite spins relative to the major

ones.(b) Two convective rolls for the aspect rathd, /N,=4.0 are P N NN
illustrated for the same parameter regimes. The two rolls exist nee 30':;:::::::::_ NN
the walls. They are separated by a wide nonconvection regime by m T T T s s s e e S
where the velocity field equals zero. {’l;::::::III G ZZ::::::::;{
S NN AN N
particles become lockgdand reaches the maximum when i t ey Tl : i i
the density approaches zggince there are no interactions { P P S i
On the other hand, it is also reasonable thg(p) might 201 | b A SR
have a long tail in the high density regime, which may rep- SRRE P i
resent very rough grains or grains of nonuniform size. b R I I Ci
Hence, we have examined numerically the case with the fol 157 | | 1+ A BERRE
. T e
lowing Vo(p): A S SR &
by e I
R S S S S NN R
Volp)=al(1+ Bp?). A SRR AN
NN A
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Our numerical results indicate that the direction of the con- | } Y3 222221717 oLl
vection rolls is quite different from the results obtained with CYYYYY YN r e
aVy(p) that assumes a cutoff. Moreover, the four roll con- o : ' ' . . '
5 10 15 20 25 30

vection pattern appears when the long-t4j(p) distribution  (b)
is assumed. In Fig. 6 is plotted the convection streamline )
with «=0.2, 8=0.5. As we increase the vibrational fre- FIG. 6. Convection patterns for slow mean speed: For slow
quency, the high intensity regime of the convection rolisMean speed=0.1, vibrating amplitudé\=2.0, 5=0.5. Two con-

moves toward the boundary. At some parameter regime th\éection rolls appears for the different vibrating frequency, where
two roll patterns evolve to fdur rolls. In Fig. 7, the four r(;II higher frequency corresponds to a higher flow rate close to the
convection pattern is plotted ' Y boundaries, respectively, from left to right=1.0 () and o

. . =15.0(b).
In Figs. 6, 7, ad 8 a wide parameter range has been (b)
examined. It seems that the appearance of the two roll pat- IIl. LINEAR STABILITY ANALYSIS
tern or four roll pattern depends not only on the aspect ratios, OFE TRAEEIC MODEL

but also on the vibrational frequency and amplitude. Future

work must focus on exploring the parameter space as well as Before studying the time-dependent properties of the vi-
the effect of boundary conditions to the convective patternsbrating beds, any model must make sure that the fixed bed
We now present the linear stability analysis of the two-solution, which is the ground state @t=0 or equivalently
dimensional traffic equations. I'=0 [23], must be stable.
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(b)

1.0. (b) As we increase the vibrating

FIG. 8. Convection pattern with four roll¢a) Four convection

5.1 with the frequencyw
rate close to the boundaries.

1.0. (b) As we increase the vibrating =

FIG. 7. Convection pattern with four roll§a) Four convection
roll appears when we increase the amplitude of the mean speed ro|| persists when we increase the amplitude of the mean speed

0.5 with the frequencyo
frequency, two roll convection patterns appear with a higher flowfrequency, two roll convection pattern appears with a higher flow

rate close to the boundaries.

v;. Substituting these into Egs.

Equations(1)—(3) assume two different fixed bed solu- (1)—(3), we find thatp, satisfies the second order equation in

tions. The first one represents a uniform granular block chartime:

acterized by the homogeneous densipys p. such that

pctp1 andv=

tion. Letp

A. Fixed bed solution

®

0.

p1tp1lT—puV?p—TV2p,

0. But there is a seconabnuniformsolu-

tion, given by Eq.(7). Both solutions represent fixed bed
solutions. We only consider the stability of a uniform solu-

0, andv

V(pc)

pq(t)sin(mmx)e'%Z, we find

Assumingp4
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S +B 5 +Da(DTap.=0 9 the ball and the plate starts to increase at the time of launch-
Pat Bo(A)pq* Do(A) Tepg © ing. Hencet, is determined by the condition
with
- ———[sin(wty) —w7cog wty) |=1+¢, 12
Bo(Q):l/T+M(7TZm2+q2), (10@ l+(,()27'2[ r((,l) 0) wT qw 0)] € ( )
Do(q) = To(72m2+q2) (10b) where € is determined by imposing the self-consistency
¢ :

A(t=ty+)>0 [Eq. (14)]. Note that Eq(12) ensures that

For pg(t)~e”, it is straightforward to show that Reis 2 212
always negative, i.e., Re<0. Thus, the uniform fixed bed (I+et o) T<I. (13
solution is stable. For the stability analysis of a nonuniformForr to be order oner needs to be of order Liw. Next

solution, see Appendix B. since the velocity is given, we find that the position of the

ball in the moving frameA(t)= [} w(t')dt’, is given by
B. Stability of the bouncing solution 0

When the system is subjected to vibrations, how do uni- 'V,
form and nonuniform solutions evolve to eventually produce A(t)=—Vo(po)(t—to) + >
convective rolls? The standard way of proceeding in the sta- 1+ o
bility analysis is first to find the basic solution, and then to X [cog wtg) —cog wt) ]/ w— 7(sinwt) — sin(wt)].
examine its stability by performing the linear stability analy-
sis of this basic solution. The onset of convection may be (14

identified as a point at which such a basic solution becomes

unstable. In the thermal convection problem such as t.h%me. Note thatA is the relative distance between the ball

Rayleigh-B@ard convection, the basic solution is the Iam|-and the plate and thus cannot be negativét) is positive
nar solution with a temperature-dependent density profil%r i <t£t where A(t) =0 and A(tg)—o T _F: ¢
o=t=lu 0/ — 1))=Y =i o,

[25]. Since there exist two fixed bed solutions, we need to hich is a function of the vibration strength is the flyin
study the stability of these two solutions separately. In what. 9 ying

follows, we present only the stability analysis associate |(rene of_the_ball__ fgr aa?g[ 3“ paraingtgrs ugecfj'rl:zj Slmutlat|ons,
with the uniform fixed bed solution, and show in Appendix B "h" '“_“;,_ ™ 5 2564 86%(p0) o 2’1 . ' F—(%’ %)
why the similar analysis for the nonuniform solution is non- ¢Nanges from (2.356,4.867) witfi;=2. ori=c 1o

trivial. Our analysis in what follows is based on the belief (1-197; 5.0368) withT;=3.84 forT'=5. For largerl’, the
that since there is no difference between the two deep insi féymg time T obviously increases. Note that the relative ve-
r?]ocity of the ball at the time of launching is not zero, i.e.,

the bed, the mechanism for the convection for the unifor

and nonuniform solutions might be the same. Whea0, (o) #0. . . . .

the basic solution associated with the uniform fixed bed so- L€t US Now examine the stab|I|Ey of this bouncing solu-
lution is also ahomogeneoussolution in density, i.e.p  tion. Letp=po+p_andv = wo(t)z+v,_ and substitute

= po, Which then undergoes harmonic oscillations. This rep2ndv into Egs.(1)-(3). Taking only the linear term, we find
resents a uniform granular block, represented by a single ball

In Fig. 9 are shown typical,(t) andA(t) as a function of

[25], moving up and down bouncing at the plate. We previ- dpLt poVe V=0, (153
ously termed such a solutionkeuncing solutiorand such a - V()
bouncing solution can be readily found by inspection of the _ e _ £+A olPo _14Tsi
traffic equationg1)—(3). Its horizontal velocity is zero, but o povgpL ;P Tsin(ot)]
the vertical velocit t) is given b
Yoo(t) is g y +uVay,, (15b

v,=wo(t)= —Vo(po)+V(Po:T’F)[Si”(“’t)_wTCOS{wt()l]l’) whereé=z— [Lw(t')dt'=z— A(t). £ measures the point of

the granular block in thdox frame that undergoes vibra-
tions. Now, taking the divergence; of Eq. (15b) and sub-

V = + w?7?). i
where V(po,7,I') =T'Vo(po)/ (1 + &”7). The numerically sfituting poV,- v =—dip,, we find the equation fop, :

observed bouncing solutions in Fig. 2 may represent such
uniform bouncing solution.
. . S . Lo+L =0, 1
We now examine the bouncing solution in some detail, (LotLy)p =0 (16
which is essentially identical to a single ball dynamics, if we\yhere
focus on the motion of the center of mass of the block. The

dynamics of a ball on a vibrating plate is nontrivial for high Lo=¢9t2—TeV§—MV§(9u (17
vibration strength, but its trajectory obeys the simple New-

tonian dynamics for low" with basically two characteristics: Ly=7"Y0+por WVi(po)[— 1+ Tsin(wt)]d;. (18)

(i) the ball moves together with the plate for some tirfiig,

the ball is launched to the space at a particular tigéhat In order to study the stability of the bouncing solution, we

dependson the vibration strength. We assume that at thenow seek a solution of the form
time of launching, the relative velocity between the block _
and the plate is such that the relative distarog), between pL=PLmg(D)sin(mmx/L)e'dEra), (19
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05

FIG. 9. Bouncing solutions. The velocity
wp(t) (lower ong, and the positionupper ong

\ ‘
\ /
-0.5 I \ /
\ /

of the ball relative to the plate as a function of
time. The ball is launched at=t, [Eq. (14)] with

a positive velocityv,(ty) >0, and flies in the air
until it hits the plate again at=t; with A(t;)
=0. The ball stays at the plate and is relaunched
att=ty+ 27/ w.

Note thatmis an integer ang+ A=z. Substituting Eq(19)
into Eq. (16), we obtain

PaTB(Q)pg+iC(A)pg+D(q)pg+iE()pq

=iLq(t)pg() +Mq(t)pa() +iNg(Dpg, (20
where
B(q)=Bo(q) = u(m?m?+q?)+ 1/, (213
C(a)=—2qVy(po), (21b)
2\72
D(q)=Do(a) —? VS(po>+T<1+wzrz)),

(219
E@)=qu(atrt) - P g
Lq(t)=—2qTV[sin(wt)—wTcogwt)], (218

2,2
Mq(t)=g? %11"2\72005(2(1)'[)—wTFZ\A/ZSin(Zwt)},
(219

V!

Nq(t)=—Fqu2 Osin(wt), 219

wherer= /L with L the box size an@q(t) = pi_mq(t). For
the most unstable mode, we sat=1. We now change the
time,t—ty+ T and focus on the one oscillation frofi+=0 to
T=2mu/w. Then, Eqs(21e—(21g are replaced by

Lq(t)— —2qT V{[ sin wtg) — &7 cog wty) Jcog wT)
+[cog wty) + w7 sin(wtgy) |siwT)},

Myg(t)

~ (1)22
_)222
qFV[( 5

=1 )
————C0g2wty) — w7 SIiN ZwIO))

27_2_

) 1.
———sSin(2wty) + wTCOE(Zwto))

xco&ZwT)—< 5

X sin(2wT)

I'poaVy

Ng(t)——
X[sin(wtg)cog wT) +cog wtg)sin(wT)].

The stability of Eq.(20) is highly nontrivial because it
contains the time-dependent inhomogeneous term, and we
employ here an approximation method that was first used in
Ref. [8], namely, we replace the time-dependent function
Lqo(T), My(T), andNg(T) by their averageover one pe-
riod, namely,(Lq(t))=T; 1/ 'dtLy(T) with T¢=(t;—to),
where the time-dependent partslig(t), Mg(t), andNg(t)
in Eq. (21) are replaced by their average values over the
flying time:

1
Siman)Hm[l_Coianf)],

co§nwT)— sin(nwTy),

anf

wheren=1 or 2. The validity of such an approximation may
be justified since we are interested in the long-time behavior
and the system continuously oscillates in time. Hence, we
have replaced thmmhomogeneoukg. (20) into thehomoge-
neousone:
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Ppo(T)+B(A)pg(T) +iC(q)pg(T)+D(a)py(T)

+iEq(T)pg(T)=0, (22)

where
C(@)=C(q) —(L(T)), (233
D(@)=D(q)—(Mq(T)), (23b)
E(q)=E(q)—(Ng(T)). (239

The stability of the homogeneous equatj&m. (22)] with
time-independent coefficients is easily determined by a sta
dard linear stability analysis, namely, we gg(t) =e’" and
substitute this to Eq(22) to obtain

AND SU YUE PRE 58

o?+[B(q)+iC(q)]Je+D(q)+iE(q)=0. (24

The condition for the instability is when the perturbations

grow in time, i.e., Re>0. Note that the solution of E¢24)
is given by

_ B(@)+iC(a)
2

g+=

1 — = —
=5 VIB(a)+iC(a)12-4D(a) - 4iE(a). (25

In order to extract the real part, we notice that the argument

an the inside the square root may be written a$’Reith R

=[(B?-C?-4D)?+(2BC—4E)?]"? and tanp=2(BC
—2E)/(B?>—C?-4D). The real part ofr..

Rgo.]=——=

(26)

When the real part of Eq(26) becomes positive, the

then uniform bouncing solutions do not exist. Otherwise, we

bouncing solution becomes unstable. Hence, the instabilitgxpect the bouncing solutions to appear.

condition for the most unstable branch becomes,cR¢E
—B/2+ RY?cos(¢/2)>0, which is rewritten by the following
inequality:
(BC-2E)?=B?(B?—|B?-C?-4D)). (27)
Since the granular block is only in motion for the flying
time, O<T=T;, but sits on the plate fof;<T<2#/w, the
stability of the granular block needs to be determined by th
effectiveinstability condition, namely, for the flying time,
Eq. (27) is operative, but for the rest of the time, the coeffi-

cients for the fixed bed solution§10a and (10b), must be
used. We thus define the effective instability condition:

oer=Ti[(BC—2E)?—-B?(B*~|B*~C?-4D|)
+ (2w w—T;)—B?(B?—|B2—4Dy|)>0. (298

When o.4>0, the bouncing solution becomes unstable.
Since  B(0)=uw?+1/r,  C(0)=C(0)—(L4(0))=0,
D(0)=Dy(0)~(Mq(0))=Do(0)=Tem?,  E(0)=E(0)
—(Ng(0))=0, we find oes(q=0)=—B(0)?B(0)?
—|B?(0)—4Dy(0)|[127/w. If B?(0)>4Dy(0) or (um?
+1/7)2>4T 2, then or(0)<0. If B2(0)<4D(0), then

In Fig. 10 is displayedo.+ as a function of the wave
numberq for 7=w, u=1, py=0.53, Vo(pg)=0.5, Vg(po)
—10,L=32, andT,=2.0. Note that fol'<I';, o IS
always negative, and thus the bouncing solutions are stable.
As we increase the control paramefér the peak ofo g
moves up and becomes zero at the criticgk 2.27, which
signals the instability of the bouncing solutions, and thus is
identified as the onset of convection. Hor-T";, there is a
band of wave numbers wheogs>0. The maximum growth

ate isq.=1.11 forl'=2.32 andg,=0.95 atl’'=2.27, which

are of order one. The corresponding wave numbers for the
convective rolls ard = 27/k~6. Since there are two rolls in

a box of sizd_ =32, the wavelength of the convective rolls is
about 8, and our analysis is consistent with the numerical
results. For other parameters, the qualitative feature is the
same, namely, foF <I"., o.4<0 for all g, and at a critical

I';, the local maximum ofr.; crosses zero aj=q., and
for'>T_, there is a band of wave numbers for whigl; is
positive[24].

IV. DISCUSSION

We conclude this paper by briefly reviewing the present
status of the convective instability of vibrating beds and
simulations of the models presented hegnedelB) and else-

oer(0)=2B%(0)[B(0)—2D,(0)] can be either positive or Where[1]. From our analytical as well as numerical analysis,
negative. Ifoe(0)>0, then the bouncing solution is always We confirm that the bouncing motion of particle collections

unstable. This determines the criterion for the existence oplays an important role in both modéland modelB. We
the bouncing solutions in the traffic equations,u;(z have, however, several issues that should be resolved in the

2 <, -y 2 ~y . near future.
+1/7)?< 4T m? and (um?+1/7)%>2T 2. And thus, if First, we discuss the role of boundary conditions. We
have employed no slip boundary conditions at the walls and

(pu+ 72+ 1Ur)2<2T w2 the plate. Further, we have put the rigid walls at the top and
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FIG. 10. The effective instability condition
oei(q) (vertical axig is plotted against the wave

=
b“’ B S numberq for different vibration strengti’. At
%o the critical I';=2.27, the local maximum of the
A growth rate crosses the zero. FB=2.2<T"_,
e O o< 0 for all g, while for I';<I'=2.32, there is
o a band of wave numbers for whieh.¢> 0.
20 ‘2 |
g
<
-25 4
©
R
-30 1 Il 1 1 1
0 0.2 0.4 0.6 0.8 1 q 12

thus suppressed the surface motion. Unlike the fluids, granuhe velocity profile obtained by the following equation fits
lar materials have been shown to exhibit very different mo-the experimental profile quite well:

tion near the wall in a zet flow experiment under gravity by
Caram and Hong20] and there has been some attempt to 42 1d
use the negative or positive slip to control the convective v(p) + = v(p)
patterng[7]. Jenkins and Askafi31] derived slip boundary dp? p dp
conditions at the wall based on the hydrodynamic equations

derived from dissipative Enskog equation. However, more\gte that the above equation appears to be consistent with
detailed studies on the boundary conditions at the wall argne traffic equations at the closed packed density, where the

required. _ . N _ relaxation functionVy(p.)=0 and the traffic equation&)

A[8] assumes no interstitial fluid such as air, and it predictg2), reduce to the modified Darcy’s law:
a series of rolls for the vertically large aspect ratio. MoBel
on the other hand predicts that the convection suppresses in
the bulk region but is confined near the surface, which ap-
pears to be in accordance with experiments and with the
results of the two-fluid model with an interstitial flu[@6].  which is precisely the equation empirically obtained by
Perhaps, the origin of drag, or the relaxation term, whether iKnight et al. It will be interesting to actually compare the
is coming from friction at the walls, or from the viscous velocity profile of the granular flows in other geometries
effect of the interstitial fluid, or from long range correlations such as the pipe flow, or a hopper flow with those predicted
among voids, may not be relevant once it is present. Howby the traffic equations, which in turn may enable one to
ever, the justification of its presence in the absence of interdentify and determine the parameters in the traffic equa-
stitial fluid may require further studies, because it raises théions. In this case, knowledge of the precise magnitude of the
validity of traffic equations at the conceptual level. slip [20,31] at the wall is required. _ _
The suppression of the convection in the bulk is due to the Finally, future work must focus on completing the stabil-
locking mechanism of grains for near the closed packed der{ty @nalysis for the spatially nonuniform solutiotsppendix

sity, which was taken into account in the present malbly B) and its instability mechanism along with the nonlinear
a cutoff inV(p), namely,V(p) =0 for p>p, . The results of analysis. In addition, the study of the surface instability and
modelB. in pa,rticular the migration of cgnvective rolls to- its connection to the surface fluidization and excitations as

ward the surfacéFig. 4) and to the side wallgFig. 5), seem well as the study of horizontal vibrations and the onset of
to be more realistic and closer to the experimental and mgiduefaction[9,27] remain important open problems, which

simulation results than those of model We certainly need may shed insight into the oscillor{28] and other related

more extensive studies of both modeind modeB to make surface instabilitied29]. Such studies are currently under
quantitative comparison with experiments. way and will be reported in future communications.

Third, Knightet al.[32] studied the velocity profile of the

—v(p)=0.

wV2v—v/r=0,

grains in a vibrating bed and measured the dimensionless ACKNOWLEDGMENTS
velocity profile, v(p)=v(z,r)/d, whered is the particle di-
ameter, and both (the radiu$ andz (the vertical heightare D.C.H. wishes to thank H. Hayakawa and D. A. Kurtze

measured from the center apd=r/r.. They reported that for helpful discussions over the course of this work.
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APPENDIX A: DERIVATION OF TRAFFIC EQUATION and the right-hand side of E¢A6) becomes
FROM ENSKOG EQUATION
1d
We present here a brief derivation of the traffic equations —g—yu,— — d—ZP+ (viscous termps
from the Enskog equation. We first recall how one obtains p
the hydrodynamic equation from the Boltzmann equation T dp
[21: =07 g T pl2tp" 0~ v,
of
Td V(p)—
R AR A AL (A1) __Tdp, Vlp) U] A7)
p dz T
whgrgF i_s the particI(_e distributipn f_uncti_on, a_nﬂzg is the  \yherer= y~1and
collision integral. If y is summation invariant, i.e., thep,
+x2=x1+ x2, Where the prime refers to the velocities of T , ,
the two colliding particles after the collision, and V(p)=— ;[[Hx pl2+p'x].
fd3px(r,p)Jg=0. Now, one can derive hydrodynamic
equations by multiplying/ d3px(r,p) with Eq. (A1) as de- For a steady state,= 0, we find
tailed in Huang[30]. We now just focus on the Navier-
Stokes equation: Tdp V
guati _fp_ (p) (A8)
p dz T
2 09 u=Fim-2v|p—“y.u|+ Eye
gt TV uEEMT ERAR AP or equivalently
(AZ) ' r 2
p'(1+px)+pB+x'pl2=0 (A9)

For granular materials, we need to take into account two
facts: first, particles are not point particles, but hard spheravith 8=g/T. Hence, we have shown that tae&component
particles with finite diameteD, so one should use the En- Of the Navier-Stokes equation reduces to the traffic equation:

skog equation instead of the Boltzmann equafi®h]. Sec-

ond, we need to take into account gravity and friction, for Ziu i) - Id_p+ [Vp)—u.] +uV2u
which the external force terda in Eq. (A2) may be replaced ot “taz) Tt p dz z
by (A10)
F/m=—g2—yu (A3) For x andy components, we simply use the Boltzmann equa-
v tion.
The second term in EqA3) is due to the friction. In the The actual form ofV(p) depends ony, which is un-

absence of interstitial fluid, its origin may lie in the frictions known. If we use the widely used form for [31] and de-

at the front and rear glass plates as well as at the walls, or ij@nd self-consistency, then we find that the mean speed has
the long range correlations among voids. However, we pointhe following form:

out that its presence in the absence of interstitial fluid needs 3

more rigorous justification. Further, for the Enskog equation, V(p)=— 9 2(1-p)°+9/2-2p

there is collisional transfer. So, the pressure tensor has two Y 2(1-p)®

components:

et or If we assume that the steady state is given by the Fermi
Py =P+ P (A4)  distribution[23], then we find

The lowest order to the collisional transfer i®,, g 4—17p+8p?
=x(p)p?/2 with y=(1—p/2)/(1—p)3, wherey is the two Vip)=—-——
particle equilibrium correlation function at the contact point Y 4(1-p)

of two colliding particles. It is known that the Enskog pres-

sure has the following two components: In either case, the coefficient is proportional to the gravity.

This is the reason for the functional form taken in E4).in
P=Tp(1+ xp/2)=Pigeart Py. (A5) the text. We caution that the fgnctional form fd(p) given
above may not be taken too literally.
Let us focus only on the component. Then, the Navier-
Stokes equation becomes APPENDIX B: STABILITY ANALYSIS OF A SPATIALLY
NONUNIFORM FIXED BED SOLUTION

17 J 1d
(E+ uzg) u,=—g— yu,— ;d—ZP+(viscous terms We_show_ here why the_ stgbility analysis of a spatially
(A6) nongnlfo_rm fixed bed solution is r_:omphcqted. In the ab.sence
of vibrations,I'=0, and the solution of this claspgy(2), is
Now, given by Eq.(7). Since the solution is spatially inhomoge-
neous, for small’, we seek bouncing solutions that are only
dP/dz=T[p'+ x'p?2+ pp’ x] a function ofz:
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p(2)=po(2)+po(2)s(2)€'", (B1)

v(2)=v(z)e", (B2)

where py(z) =dpo(z)/dz. We put Egs.(B1) and (B2) into
the traffic equation$l)—(3) and linearize to obtain

1 dpo(2). d 1dp)
poz) az NPT &*FOE)U&)—O, ®3)

P ds(z) . d2 r
e a2 "“’U(Z>—(1/T—Md—zz 0(2)= < V(po(2)).

(B4)

Let Q(2) = —(1/po)dpo/dz=—1/7c2V(p,). Then, we find
equations forQ(z) andv(2):

TRAFFIC EQUATIONS AND GRANULAR CONVECTION
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—iwQ(z)s(z) + (B5)

d
d—Z—Q<z>)v<z>=o,

2
io+1l/r—u—:
'udzz

ds(z)

—cQ(2)—,+ v(2)=cglQ(2).

(B6)

We need to find the solutions for Eqd85) and (B6) that
both satisfy the boundary conditions(z),v(z)—0 asz
—oo, Wwhich appears to be nontrivial if we relax the condition
thatI” is nota small parameter. Even though we are lucky to
find the solutions, the stability analysis around these solu-
tions still presents difficulties.
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